Abstract

The topological Hall effect (THE), as one of the primary manifestations of non‐trivial topology of chiral skyrmions, is traditionally used to detect the emergence of skyrmion lattices with locally ferromagnetic order. In this work we demonstrate that the appearance of non‐trivial two‐dimensional chiral textures with locally anti‐ferromagnetic order can be detected through the spin version of the THE – the topological spin Hall effect (TSHE). Utilizing the semiclassical formalism, here used to combine chiral antiferromagnetic textures with a density functional theory description of the collinear, degenerate electronic structure, we follow the real‐space real‐time evolution of electronic SU(2) wavepackets in an external electric field to demonstrate the emergence of sizeable transverse pure spin current in synthetic antiferromagnets of the Fe/Cu/Fe trilayer type. We further unravel the extreme sensitivity of the TSHE to the details of the electronic structure, suggesting that the magnitude and sign of the TSHE in transition‐metal synthetic antiferromagnets can be engineered by tuning such parameters as the thickness or band filling. Besides being an important step in our understanding of the topological properties of ever more complex skyrmionic systems, our results bear great potential in stimulating the discovery of antiferromagnetic skyrmions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.