Abstract

The needs of high speed performance electronic devices for various applications require novel materials and new physical phenomena. For these purposes we propose to study new physical effects based on electron scattering on magnetic skyrmions and vortices distributed in a 2D ferromagnetic material. We show that the topological spin Hall effect can be efficiently employed for the filtering, switching, and separation of spin currents. For some values of the parameters (conduction electron concentrations, and skyrmion/vortex sizes) it is possible to separate Hall currents for different electron spin projections as it is like for different carrier charges (electrons and holes) in the normal Hall effect. The calculations are performed using the Boltzmann kinetic equation for the nonequilibrium distribution function and the Lippmann–Schwinger equation for the transition matrix in the whole range of the adiabaticity parameter. The spin filtering due to the skyrmion/vortex scattering can be several orders of magnitude more efficient in the narrow range of the electron concentrations than that of the ordinary ferromagnetic spin polarization in spintronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call