Abstract

A general relation is derived between the band structure of an arbitrary low-loss unit cell and its effective index of refraction. In addition, we determine the maximum unit cell size that defines the "metamaterial regime" [D. R. Smith et al., Phys. Rev. E 71, 036617 (2005)]. Furthermore, these general rules allow for the design of a subwavelength near-infrared negative-index material, where the negative refractive index is verified by band calculations to be a bulk property. Full-wavelength simulations of prisms consisting of these unit cells suggest behavior consistent with Snell's law in the negative-index regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.