Abstract

We investigate on the basis of a full three-dimensional spatio-temporal Maxwell-Bloch approach the possibility of complete loss compensation in non-bianisotropic negative refractive index (NRI) metamaterials. We show that a judicious incorporation of optically pumped gain materials, such as laser dyes, into a double-fishnet metamaterial can enable gain in the regime where the real part n<sup>&prime;</sup> of the resulting effective refractive index (n = n<sup>&prime;</sup> + in<sup>&Prime;</sup>) is negative. It is demonstrated that a frequency band exists for realistic opto-geometric and material (gain/loss) parameters where n<sup>&prime;</sup> &lt; 0 and simultaneously n<sup>&Prime;</sup> &lt; 0 hold, resulting in a figure-of-merit that diverges at two distinct frequency points. Having ensured on the microscopic, meta-molecular level that realistic levels of losses and even gain are accessible in the considered optical frequency regime we explore the possibility of compensating propagation losses in a negative refractive index slow-light metamaterial heterostructure. The heterostructure is composed of a negative refractive index core-layer bounded symmetrically by two thin active cladding layers providing evanescent gain to the propagating slow light pulses. It is shown that backward-propagating light - having anti-parallel phase and group velocities and experiencing a negative effective refractive index - can be amplified inside this slow-light waveguide structure. Our results provide a direct and unambiguous proof that full compensation of losses and attainment of gain are possible on the microscopic as well as the macroscopic level in the regime where the non-bianisotropic refractive index is negative - including, in particular, the regime where the guided light propagates slowly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call