Abstract
With the continued integration of technology in medicine, large amounts of patient data are often vulnerable to cyber-attacks. Medical data must be secured, however traditional cryptographic algorithms are inapplicable to medical images due to factors such as bulk data capacity, strong correlation among adjacent pixels, and high redundancy. To address the need for new medical image encryption algorithms, a novel approach based on the central dogma of molecular biology is proposed. The resulting algorithm has a linear runtime complexity, and is resistant to brute force, differential and statistical attacks. The algorithm advances the state-of-the-art in DNA-based image encryption and surpasses recent approaches in medical image encryption in its defence against cyber-attacks. Clinical Relevance- Secure data transmission and storage is critical for patient privacy. This algorithm increases the security of patient imaging when compared to image encryption algorithms in literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.