Abstract

Herein, a ZrO2 added α-Fe2O3 photoanode that can split water at low applied potential is reported. First, the pristine hematite α-Fe2O3 photoanode was synthesized using an aerosol-assisted chemical vapour deposition (AACVD) method followed by modification with various amounts of ZrO2 (2 to 40%) in the form of thin films on conducting glass substrate. The XRD, Raman spectroscopy and scanning electron microscopy (SEM) analyses confirmed the presence of the monoclinic phase of ZrO2 in the composites with multifaceted particles of compact morphology. The optical analysis showed an increase in the absorbance and variation in band gap of the composites ascribed to the heterogeneity of the material. The photoelectrochemical studies gave a photocurrent density of 1.23 mA cm-2 at 1.23 V vs. RHE for the pristine hematite and remarkably higher value of 3.06 mA cm-2 for the optimized amount of ZrO2 in the modified α-Fe2O3 photoanode. To the best of our knowledge, this is the highest photocurrent reported for a ZrO2 containing photoanode. The optimized composite electrode produced nine times more oxygen than that produced by pristine hematite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.