Abstract

Due to increasing demand of energy and the limited supply of the main energy sources (coal, oil, uranium etc.), scientists are looking for the alternative energy sources which are renewable, low cost, easy to manufacture, abundant, light weight and efficient. Photoelectrochemical (PEC) cell has the potential to convert and store solar energy into chemical bonds through the splitting of water into molecular oxygen and hydrogen. Hematite (α-Fe2O3) is a promising photoanode material due to its chemical stability in aqueous mediums, suitable energy band gap for light harvesting, low cost and environment friendliness. However, its performance for water oxidation is limited by low carrier concentration and poor electronic properties that lead to high overpotential for water oxidation and low solar to hydrogen conversion (STH) efficiency. Nanostructuring, elemental doping, surface passivation layers and deposition of co-catalyst layers are the possible ways to improve the performance of hematite. Here, I report a comprehensive approach (nanostructuring, doping and surface passivation) to improve the performance of hematite photoanode. A substantial improvement in the photoelectrochemical (PEC) performance of hematite (α-Fe2O3) has been observed by doping with manganese (Mn). Fe2O3 nanorods sample with 5% Mn treatment show a photocurrent density of 1.6 mAcm-2, (75% higher than that of pristine Fe2O3) at 1.23 V vs. RHE and a plateau photocurrent density of 3.2 mAcm-2 at 1.8 V vs. RHE in 1M NaOH electrolyte solution (pH 13.6). Consequently, we established a simple method to passivate the surface defects of hematite photoanode for water splitting with a core-shell hematite (α-Fe2O3) nanorods system. Electrochemical impedance spectroscopy (EIS) characterization reveals passivation of the surface defects by the highly crystalline hematite shell layer, which enhances the charge injection. In pristine hematite, more holes are accumulated on the surface and the charge transfer to the electrolyte occurs through surface states, whereas in core-shell hematite photoanode, the majority of hole transfer process occurs through the valence band. As a result, the photoactivity of the core-shell nanorods: 1.2 mAcm-2, at 1.23 V vs. RHE, is twice that of pristine hematite nanorods. After establishing the Mn doped and core-shell hematite systems, we employed intensity modulated photocurrent spectroscopy (IMPS) to understand their charge dynamics for PEC water splitting. The information about the photogenerated holes transfer at the electrode/electrolyte interface for water oxidation and losses due to electron-hole recombination via surface states will help to understand the limiting factors in hematite photoanodes. We observed a two-fold increase in charge transfer rate upon Mn doping, and more than one order reduction in charge recombination rate in core-shell hematite as compared to the pristine hematite photoanode. These results indicate that both Mn doped and core shell hematite photoanodes enhance the PEC performance, although the…

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call