Abstract
Automated defect inspection is becoming increasingly important for advanced manufacturing. The ability to automatically inspect for critical defects early in the production cycle can reduce production costs and resources on unnecessary manufacturing steps. While there are many inspection techniques available, samples from early in a production workflow can prove challenging as they may still have systematic tooling marks, causing preferential scattering and hindering defect extraction. We propose a new imaging technique that exploits the preferential scattering from a technical surface to generate predictable fringe patterns on the sample's surface using only an array of LEDs. The patterns from this adapted fringe projection technique are imaged, and phase shifting algorithms are used to recover surface undulations on the sample. We implement this technique in the context of Hard Disk Drive platters that exhibit tooling marks from the lapping process and show that it is possible to image both highly scattering pits and scratches, as well as slow surface undulations with the same apparatus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.