Abstract

Agriculture and its supply chain pose significant environmental threats. This study employs Life Cycle Assessment (LCA) to explore the environmental impact of fresh bell pepper production and distribution, comparing Urban and Peri-Urban Agriculture (UPA) with Rural Long-Distance Food Supply Systems (RLDFS). Four UPA scenarios (hydroponics, soil-based greenhouse, open-field conventional, and organic) and two RLDFS scenarios (soil-based greenhouse and open-field conventional) are evaluated using SimaPro, incorporating input from UPA practitioners and rural farmers. Results reveal an energy demand range of 0.011 to 5.5 kWh/kg eq., with urban greenhouses exhibiting the lowest consumption and hydroponics the highest due to lighting, ventilation, and irrigation. Hydroponics exhibits a global warming potential of 7.24 kg of CO2 eq·kg−1, with energy demand contributing over 95 %, surpassing other scenarios by 7–25 times, necessitating reduction for sustainability. RLDFS's environmental impact is dominated by transportation (over 70 %), meanwhile other UPA systems are influenced by irrigation, infrastructure, and fertilizers. Despite challenges, UPA-hydroponics proves to be 1.7 to 4.3 times more land-use-efficient than other scenarios, emphasizing its potential. The study highlights the need to address electricity usage in UPA-hydroponics for carbon footprint reduction. Despite challenges, hydroponics could contribute to sustainable food security, and RLDFS does not significantly lag in environmental performance compared to UPA other than Ozone layer depletion criteria attributed to fossil fuel usage in transportation. These insights offer valuable guidance for urban development and policy formulation, promoting sustainable agricultural practices and supporting policies for agronomic and supply chain sustainability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call