Abstract

We present two efficient Apriori implementations of Frequent Itemset Mining (FIM) that utilize new-generation graphics processing units (GPUs). Our implementations take advantage of the GPU's massively multi-threaded SIMD (Single Instruction, Multiple Data) architecture. Both implementations employ a bitmap data structure to exploit the GPU's SIMD parallelism and to accelerate the frequency counting operation. One implementation runs entirely on the GPU and eliminates intermediate data transfer between the GPU memory and the CPU memory. The other implementation employs both the GPU and the CPU for processing. It represents itemsets in a trie, and uses the CPU for trie traversing and incremental maintenance. Our preliminary results show that both implementations achieve a speedup of up to two orders of magnitude over optimized CPU Apriori implementations on a PC with an NVIDIA GTX 280 GPU and a quad-core CPU.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.