Abstract
Hardware parallelism should be exploited to improve the performance of computing systems. Single instruction multiple data (SIMD) architecture has been widely used to maximize the throughput of computing systems by exploiting hardware parallelism. Unfortunately, branch divergence due to branch instructions causes underutilization of computational resources, resulting in performance degradation of SIMD architecture. Graphics processing unit (GPU) is a representative parallel architecture based on SIMD architecture. In recent computing systems, GPUs can process general-purpose applications as well as graphics applications with the help of convenient APIs. However, contrary to graphics applications, general-purpose applications include many branch instructions, resulting in serious performance degradation of GPU due to branch divergence. In this paper, we propose concurrent warp execution (CWE) technique to reduce the performance degradation of GPU in executing general-purpose applications by increasing resource utilization. The proposed CWE enables selecting co-warps to activate more threads in the warp, leading to concurrent execution of combined warps. According to our simulation results, the proposed architecture provides a significant performance improvement (5.85 % over PDOM, 91 % over DWF) with little hardware overhead.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have