Abstract
In practical applications, undesirable deformation and failure of the container may appear due to intense liquid oscillation. Anti-slosh baffle is extensively applied to the reduction of sloshing response. Thus, a semi-analytical mathematical model is proposed to extract the vibratory characteristics of liquid interacting with elastic baffle in a rectangular rigid container. The superposition method and the separation of variables are used to analytically formulate the velocity potentials of sub-domains. The baffle deflection is expanded using its dry-modal functions. A linear finite-dimension equation system is derived to treat the eigenvalue problem of liquid considering hydroelasticity through implementation of sloshing condition, continuity and compatibility conditions. Then, the total velocity potential is comprised of rigid and perturbed components for laterally excited container. The coupled modal orthogonality is demonstrated by use of Hamilton's principle. The system response equation is established by combination of wave equations and baffle equation. Convergence study is performed. The present results are compared with the theoretical and numerical solutions from the reported literatures. Good agreements are achieved. The effects of baffle parameters on the natural frequencies, mode shapes and dynamic responses are evaluated in detail. It is found that the thin baffle may increase the sloshing frequencies to higher values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.