Abstract

Sloshing may induce adverse loads to cause structural instability and damage. A vertical elastic baffle mounted at the inside bottom of a rectangular container is used as an anti-slosh device to attenuate the liquid oscillation. A semi-analytical model is presented to analyze the hydroelastic problem. The liquid is partitioned into four simple sub-domains with three hypothetical interfaces. The velocity potential of each sub-domain is analytically deduced by the separation of variables. The baffle deflection is expanded into the Fourier series by its dry modals. The eigenvalue equation is formulated by plugging the velocity potentials into the sloshing conditions, interface continuity conditions, as well as the dominant equation and compatibility conditions of the baffle. Then, the velocity potential is expressed by a complete basis of the coupled mode shapes for the system considered under lateral excitation. The system response equation is constituted by inserting the velocity potential into wave equations and baffle equation. The proposed method is verified by comparing the present results with the available data. In addition, numerical analyses are performed to examine the effects of baffle parameters on the natural frequencies, mode shapes and dynamic responses of the container. The sloshing frequency may be altered to a higher value due to the installation of the elastic baffle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.