Abstract

The free vibration characteristics of FGM cylindrical shells partially resting on elastic foundation with an oblique edge are investigated by an analytical method. The cylindrical shell is partially surrounded by an elastic foundation which is represented by the Pasternak model. An edge of an elastic foundation lies in a plane that is oblique at an angle with the shell axis. The motion of shell is represented based on the first order shear deformation theory (FSDT) to account for rotary inertia and transverse shear strains. The functionally graded cylindrical shell is composed of stainless steel and silicon nitride. Material properties vary continuously through the thickness according to a four-parameter power law distribution in terms of volume fraction of the constituents. The equation of motion for eigenvalue problem is obtained using Rayleigh–Ritz method and variational approach. To validate the present method, the numerical example is presented and compared with the available existing results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.