Abstract

This research presents a continuous element model for solving vibration problems of stepped composite cylindrical shells surrounded by Pasternak foundations with various boundary conditions. Based on the First Order Shear Deformation Theory (FSDT), the equations of motion of the circular cylindrical shell are introduced and the dynamic stiffness matrix is obtained for each segment of the uniform shell. The interesting assembly procedure of continuous element method (CEM) is adopted to analyze the dynamic behavior of the stepped composite cylindrical shell surrounded by an elastic foundation. Free vibrations and harmonic responses of different configurations of stepped composite cylindrical shells on elastic foundations are examined. Effects of structural parameters, stepped thickness and elastic foundations on the free vibration responses of stepped composite cylindrical shells are also presented. Comparisons with previously published results and finite element (FE) analyses show that the proposed technique saves data storage volume and calculating time, and is accurate and efficient for widening the studied frequency range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.