Abstract

The free vibration characteristics of fluid-filled functionally graded cylindrical shells buried partially in elastic foundations are investigated by an analytical method. The elastic foundation of partial axial and angular dimensions is represented by the Pasternak model. The motion of the shells is represented by the first-order shear deformation theory to account for rotary inertia and transverse shear strains. The functionally graded cylindrical shells are composed of stainless steel and silicon nitride. Material properties vary continuously through the thickness according to a power law distribution in terms of the volume fraction of the constituents. The governing equation is obtained using the Rayleigh–Ritz method and a variation approach. The fluid is described by the classical potential flow theory. Numerical examples are presented and compared with existing available results to validate the present method. The free vibration of fluid-filled functionally graded cylindrical shells buried partially in elastic foundations is investigated by an analytical method. The elastic foundation of partial axial and angular dimensions is represented by the Pasternak model. Shell motion is represented by first-order shear deformation theory. The governing equation is obtained using the Rayleigh–Ritz method. The fluid is described by classical potential flow theory. Numerical examples are presented and compared with existing available results to validate the present method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.