Abstract
This paper describes an inexpensive, non-invasive and highly adaptable surface reconstruction device for opaque liquids. The instrument was developed to study the lateral sloshing of ferrofluids in microgravity as part of the UNOOSA DropTES 2019 StELIUM project. Its design is driven by the geometrical and mechanical constraints imposed by ZARM’s drop tower, where the experiment was launched in November 2019. The launch catapult and deceleration systems impose strong axial g-loads to a system that is confined in the reduced capsule environment. Redundant procedures are implemented to measure the first two lateral sloshing frequencies and damping ratios of the magnetic liquid, as well as its equilibrium surface in microgravity. Ideal vertical resolutions between 0.25 and 0.4 mm/px can be achieved with the configuration here proposed. The final performance depends, among other factors, on the correct application of the robust calibration procedure that is documented in this work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.