Abstract

A statistical-mechanical treatment of the solubilization in micelle is presented in combination with molecular simulation. The micellar solution is viewed as an inhomogeneous and partially finite, mixed solvent system, and the method of energy representation is employed to evaluate the free-energy change for insertion of a solute into the micelle inside with a realistic set of potential functions. Methane, benzene, and ethylbenzene are adopted as model hydrophobic solutes to analyze the solubilization in sodium dodecyl sulfate micelle. It is shown that these solutes are more favorably located within the micelle than in bulk water and that the affinity to the micelle inside is stronger for benzene and ethylbenzene than for methane. The micellar system is then divided into the hydrophobic core, the head-group region in contact with water, and the aqueous region outside the micelle to assess the relative importance of each region in the solubilization. In support of the pseudophase model, the aqueous region is found to be unimportant to determine the extent of solubilization. The contribution from the hydrophobic-core region is shown to be dominant for benzene and ethylbenzene, while an appreciable contribution from the head-group region is observed for methane. The methodology presented is not restricted to the binding of a molecule to micelle, and will be useful in treating the binding to such nanoscale structures as protein and membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.