Abstract
AbstractLet X be a normal projective variety of dimension n and G an abelian group of automorphisms such that all elements of $G\setminus \{\operatorname {id}\}$ are of positive entropy. Dinh and Sibony showed that G is actually free abelian of rank $\le n - 1$ . The maximal rank case has been well understood by De-Qi Zhang. We aim to characterize the pair $(X, G)$ such that $\operatorname {rank} G = n - 2$ .
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have