Abstract
We investigate the structure of lattice-preserving homomorphisms of free lattice-ordered Abelian groups to the ordered group of integers. For any lattice-ordered group, a choice of generators induces on such homomorphisms a partial commutative monoid canonically embedded into a direct product of the group of integers. Free lattice-ordered Abelian groups can be characterised in terms of this dual object and its embedding. For finite sets of generators, we obtain the stronger result: a lattice-ordered Abelian group is free on a finite generating set if and only if the generators make ℤ-valued homomorphisms a free Abelian group of finite rank. One of the main points of the paper is that all results are proved in an entirely elementary and self-contained manner. To achieve this end, we give a short new proof of the standard result of Weinberg that free lattice-ordered Abelian groups have enough ℤ-valued homomorphisms. The argument uses the ultrasimplicial property of ordered Abelian groups, first established by Elliott in a different connection. The paper is made self-contained by a new proof of Elliott's result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.