Abstract
Water security has become an increasing concern for many water system managers due to climate change and increased population. In order to improve the security of supply, alternative sources such as harvested stormwater, recycled wastewater and desalination are becoming more commonly used. This brings about the need for tools to analyze and optimize systems that use such sources, which are generally more complex than traditional water systems. Previous methodologies have been limited in their scope and cannot be applied to all types of water sources and systems. The framework presented in this paper has been developed for holistic analysis and optimization of water supply and distribution systems that use alternative water sources. It includes both design and operational decision variables, water and energy infrastructure, simulation of systems, analysis of constraints and objectives, as well as policies and regulations which may affect any of these factors. This framework will allow users to develop a comprehensive analysis and/or optimization of their water supply system, taking into account multiple types of water sources and consumers, the effect of their own design and operational decisions, and the impact of government policies and different energy supply options. Two case study systems illustrate the application of the framework; the first case study is a harvested stormwater system that is used to demonstrate the importance of simulation and analysis prior to optimization, the second utilizes four different water sources to increase security of supply and was optimized to reduce pump energy use.
Highlights
A changing climate and increasing population have put a strain on traditional water resources, which typically rely on natural catchment water
It is important to note that in most optimization problems, not all of these parameters will be available as decision variables at once, and it is likely that only a small number will be considered
When performing multi-objective optimization, trade-offs between the different objectives should be considered by the development of Pareto fronts, allowing the decision maker to determine which Pareto optimal solution best fits their needs. [E3] the specific constraints to be considered as described in [S4]. [E4] the evaluation of the constraints compared to the limits set by the user; maximum and/or minimum values for each constraint need to be specified
Summary
A changing climate and increasing population have put a strain on traditional water resources, which typically rely on natural catchment water. This has made water security an increasing concern for many water system managers, who have investigated options for reducing demand and supplementing supply. Alternative water sources, such as harvested stormwater, recycled wastewater and desalination, are increasingly being used to improve water security of cities and towns. The framework introduced in this paper can be applied to the optimization of the design and operation of water supply and distribution systems from source to consumer, considering multiple traditional and alternative sources, multiple uses and multiple objectives. The objectives of this paper are to (1) develop a generalized framework that could be applied to any water supply and/or distribution system optimization problem and (2) outline the application of this framework to two case study systems with a focus on optimizing their operation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.