Abstract
This study investigates the fracture properties of large-particle size hydraulic asphalt concrete (LPSHAC) at various temperatures using pre-cracked trabecular bending tests and digital image correlation (DIC). Results show that temperature significantly affects LPSHAC’s fracture properties, with the energy release rate and J-integral fracture toughness increasing initially and then decreasing as temperature rises. Horizontal strain better characterizes damage progression at higher temperatures. Crack curvature coefficients at 0 °C and 20 °C increased by 8.2 % and 30.1 % compared to that at −20 °C, while the aggregate fracture area ratio rose as the temperature decreased from 20 °C to −20 °C.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have