Abstract

Jaynes-Cummings-Hubbard arrays provide unique opportunities for quantum emulation as they exhibit convenient state preparation and measurement, as well as in situ tuning of parameters. We show how to realize strongly correlated states of light in Jaynes-Cummings-Hubbard arrays under the introduction of an effective magnetic field. The effective field is realized by dynamic tuning of the cavity resonances. We demonstrate the existence of Laughlin-like fractional quantum Hall states by computing topological invariants, phase transitions between topologically distinct states, and Laughlin wave function overlap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.