Abstract

Fractional master equations containing fractional time derivatives of order 0\ensuremath{\le}1 are introduced on the basis of a recent classification of time generators in ergodic theory. It is shown that fractional master equations are contained as a special case within the traditional theory of continuous time random walks. The corresponding waiting time density \ensuremath{\psi}(t) is obtained exactly as \ensuremath{\psi}(t)=(${\mathit{t}}^{\mathrm{\ensuremath{\omega}}\mathrm{\ensuremath{-}}1}$/C)${\mathit{E}}_{\mathrm{\ensuremath{\omega}},\mathrm{\ensuremath{\omega}}}$(-${\mathit{t}}^{\mathrm{\ensuremath{\omega}}}$/C), where ${\mathit{E}}_{\mathrm{\ensuremath{\omega}},\mathrm{\ensuremath{\omega}}}$(x) is the generalized Mittag-Leffler function. This waiting time distribution is singular both in the long time as well as in the short time limit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.