Abstract
Fractional partial differential equations (FPDEs) with a time derivative of fractional order are used to describe wave motion in complex viscoelastic media with non-traditional equations of motion. Kappler et al. [Phys. Rev. Fluids 2, 114804 (2017)] derived a fractional diffusion-wave equation for a nonlinear Lucassen wave propagating along an elastic layer coupled to a viscous substrate. The fractional time derivative of order 3/2 in the linear form of this equation lies midway between order 1 for a diffusion process described by a parabolic equation, and order 2 for the traditional hyperbolic wave equation. The inclusion of nonlinear elasticity tends to inhibit purely progressive wave motion that is associated with classical nonlinear plane waves in fluids and solids, and which is described accurately by parabolic-like, Burgers-type evolution equations. In this work, a general FPDE is analyzed in a parameter space consisting of varying nonlinearity and time fractional orders. The focus is on conditions under which the FPDE can be modeled accurately with a Burgers-type evolution equation for progressive wave motion. The method of lines in combination with a general Runge-Kutta method for forward integration is used for numerical analysis. [B.E.S. is supported by the ARL:UT McKinney Fellowship in Acoustics.]Fractional partial differential equations (FPDEs) with a time derivative of fractional order are used to describe wave motion in complex viscoelastic media with non-traditional equations of motion. Kappler et al. [Phys. Rev. Fluids 2, 114804 (2017)] derived a fractional diffusion-wave equation for a nonlinear Lucassen wave propagating along an elastic layer coupled to a viscous substrate. The fractional time derivative of order 3/2 in the linear form of this equation lies midway between order 1 for a diffusion process described by a parabolic equation, and order 2 for the traditional hyperbolic wave equation. The inclusion of nonlinear elasticity tends to inhibit purely progressive wave motion that is associated with classical nonlinear plane waves in fluids and solids, and which is described accurately by parabolic-like, Burgers-type evolution equations. In this work, a general FPDE is analyzed in a parameter space consisting of varying nonlinearity and time fractional orders. The focus is on conditions ...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.