Abstract
Fractal time random walks with generalized Mittag-Leffler functions as waiting time densities are studied. This class of fractal time processes is characterized by a dynamical critical exponent 0<ω≤1, and is equivalently described by a fractional master equation with time derivative of noninteger order ω. Exact Greens functions corresponding to fractional diffusion are obtained using Mellin transform techniques. The Greens functions are expressible in terms of general H-functions. For ω<1 they are singular at the origin and exhibit a stretched Gaussian form at infinity. Changing the order ω interpolates smoothly between ordinary diffusion ω=1 and completely localized behavior in the ω→0 limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.