Abstract
The purposes of our studies are to examine whether or not fractal-feature distance deduced from virtual volume method can simulate observer performance indices and to investigate the physical meaning of pseudo fractal dimension and complexity. Contrast-detail (C-D) phantom radiographs were obtained at various mAs values (0.5 - 4.0 mAs) and 140 kVp with a computed radiography system, and the reference image was acquired at 13 mAs. For all C-D images, fractal analysis was conducted using the virtual volume method that was devised with a fractional Brownian motion model. The fractal-feature distances between the considered and reference images were calculated using pseudo fractal dimension and complexity. Further, we have performed the C-D analysis in which ten radiologists participated, and compared the fractal-feature distances with the image quality figures (IQF). To clarify the physical meaning of the pseudo fractal dimension and complexity, contrast-to-noise ratio (CNR) and standard deviation (SD) of images noise were calculated for each mAs and compared with the pseudo fractal dimension and complexity, respectively. A strong linear correlation was found between the fractal-feature distance and IQF. The pseudo fractal dimensions became large as CNR increased. Further, a linear correlation was found between the exponential complexity and image noise SD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Australasian Physical & Engineering Sciences in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.