Abstract
Timely prediction of cardiovascular diseases with the help of a computer-aided diagnosis system minimizes the mortality rate of cardiac disease patients. Cardiac arrhythmia detection is one of the most challenging tasks, because the variations of electrocardiogram(ECG) signal are very small, which cannot be detected by human eyes. In this study, an 11-layer deep convolutional neural network model is proposed for classification of the MIT-BIH arrhythmia database into five classes according to the ANSI-AAMI standards. In this CNN model, we designed a complete end-to-end structure of the classification method and applied without the denoising process of the database. The major advantage of the new methodology proposed is that the number of classifications will reduce and also the need to detect, and segment the QRS complexes, obviated. This MIT-BIH database has been artificially oversampled to handle the minority classes, class imbalance problem using SMOTE technique. This new CNN model was trained on the augmented ECG database and tested on the real dataset. The experimental results portray that the developed CNN model has better performance in terms of precision, recall, F-score, and overall accuracy as compared to the work mentioned in the literatures. These results also indicate that the best performance accuracy of 98.30% is obtained in the 70:30 train-test data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Australasian Physical & Engineering Sciences in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.