Abstract
We propose a multidimensional reconciliation encoding algorithm based on a field-programmable gate array (FPGA) with variable data throughput that enables quantum key distribution (QKD) systems to be adapted to different throughput requirements. Using the circulatory structure, data flow in the most complex pipeline operation in the same time interval, which enables the structural multiplexing of the algorithm. We handle the calculation and storage of eight-dimensional matrices cleverly to conserve resources and increase data processing speed. In order to obtain the syndrome more efficiently, we designed a simplified algorithm according to the characteristics of the FPGA and parity-check matrix, which omits the unnecessary operation of matrix multiplication. The simplified algorithm could adapt to different rates. We validated the feasibility and high speed of the algorithm by implementing the multidimensional reconciliation encoding algorithm on a Xilinx Virtex-7 FPGA. Our simulation results show that the maximum throughput could reach 4.88 M symbols/s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.