Abstract

Objective: In this work, the selection of equiripple optimum design approach along with Canonical Signed Digital (CSD) representation of filter coefficients give an efficient and simplified design for Finite Impulse Response (FIR) digital filter. Methods/Statistical Analysis: The modern sophisticated communication devices demand for digital filters having the best possible performance. In this paper the author introduces design of FPGA based CSD finite impulse response filter with the help of an equiripple design method which provides the best possible frequency response. The direct form structure adopted in realizing this filter has better performance in terms of cost, power consumption and speed of operation. Findings: The CSD representation of filter coefficients reduces the complexity of multipliers. The resource utilization of designed FIR CSD filter analyzes with the help of a number of performance parameters and compares with FIR fully parallel filter. The proposed filter uses MATLAB fdatool to determine filter coefficients and Xilinx ISE 9.2i to simulate the performance of filter. Applications: The proposed filter can be used in several audio applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.