Abstract

Fourth order finite difference methods combined with an integrating factor strategy for steady convection and diffusion partial differential equations with variable coefficients in both 2D and 3D are proposed using uniform Cartesian grids. An integrating factor strategy is applied to transform the convection and diffusion PDE to a self-adjoint form. Then, a fourth order finite difference method is obtained through a second order scheme followed by the Richardson extrapolation. Another approach is a direct fourth order compact finite difference scheme. The developed integrating factor strategy provides an efficient way for dealing with large convection coefficients. Several numerical examples are presented to demonstrate the convergence order and compare the two fourth order methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.