Abstract

We present a new fourth order compact finite difference scheme based on off-step discretization for the solution of the system of 3D quasi-linear elliptic partial differential equations subject to appropriate Dirichlet boundary conditions. We also develop new fourth order methods to obtain the numerical solution of first order normal derivatives of the solution. In all the cases, we use only 19-grid points of a single computational cell to compute the problem. The proposed methods are directly applicable to singular problems and the problems in polar coordinates, without any modification required unlike the previously developed high order schemes of [14] and [30]. We discuss the convergence analysis of the proposed method in details. Many physical problems are solved and comparative results are given to illustrate the usefulness of the proposed methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.