Abstract

In this paper we present a numerical technique for solving Kuramoto-Sivashinsky equation, based on spectral Fourier methods. This equation describes reaction diffusion problems, and the dynamics of viscous-fuid films flowing along walls. After we wrote the equation in Fourier space, we get a system. In this case, the exponential time differencing methods integrate the system very much more accurately than other methods since the exponential time differencing methods assume in their derivation that the solution varies slowly in time. When evaluating the coefficients of the exponential time differencing and the exponential time differencing Runge Kutta methods via the”Cauchy integral”. All computational work is done with Matlab package.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.