Abstract
The electromagnetic propagation in dispersive media is modeled using finite difference time domain (FDTD) method based on the Runge-Kutta exponential time differencing (RKETD) method. The second-order RKETD-FDTD formulation is derived. The high accuracy and efficiency of the presented method is confirmed by computing the transmission and reflection coefficients for a nonmagnetized collision plasma slab in one dimension. The comparison of the numerical results of the RKETD and the exponential time differencing (ETD) algorithm with analytic values indicates that the RKETD is more accurate than the ETD algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Infrared and Millimeter Waves
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.