Abstract

A new model of line-profile broadening due to the effect of linear and planar lattice defects has been incorporated into the conventional Rietveld algorithm for the structural refinement and whole-pattern fitting of powder data. The proposed procedure, applied to face-centred cubic (f.c.c.) structure materials, permits better modelling, even in the case of anisotropic line broadening and otherhkl-dependent effects that can be related to the presence of dislocations and planar defects (stacking faults and twinning). Besides better quality of the profile fitting, detailed information on the defect structure can be produced: dislocation density and cut-off radius, stacking- and twin-fault probabilities can be refined together with the structural parameters. For each phase (in different samples or in multi-phase samples) the appropriatesize–strainmodel can be selected. The Fourier formalism, which is the basis of the line-profile modelling, also permits an easy adaptation to different lattice-defect models. New approaches can be easily introduced and tested against or together with the existing ones. Finally, the devised program can also be used for the simulation of powder patterns for materials with different types and amounts of line and plane lattice defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.