Abstract

We derive Feynman-Kac formulas for the ultra-violet renormalized Nelson Hamiltonian with a Kato decomposable external potential and for corresponding fiber Hamiltonians in the translation invariant case. We simultaneously treat massive and massless bosons. Furthermore, we present a non-perturbative construction of a renormalized Nelson Hamiltonian in the non-Fock representation defined as the generator of a corresponding Feynman-Kac semi-group. Our novel analysis of the vacuum expectation of the Feynman-Kac integrands shows that, if the external potential and the Pauli-principle are dropped, then the spectrum of the $N$-particle renormalized Nelson Hamiltonian is bounded from below by some negative universal constant times $g^4N^3$, for all values of the coupling constant $g$. A variational argument also yields an upper bound of the same form for large $g^2N$. We further verify that the semi-groups generated by the ultra-violet renormalized Nelson Hamiltonian and its non-Fock version are positivity improving with respect to a natural self-dual cone, if the Pauli principle is ignored. In another application we discuss continuity properties of elements in the range of the semi-group of the renormalized Nelson Hamiltonian.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.