Abstract
We report on the calculation of the symmetry resolved entanglement entropies in two-dimensional many-body systems of free bosons and fermions by dimensional reduction. When the subsystem is translational invariant in a transverse direction, this strategy allows us to reduce the initial two-dimensional problem into decoupled one-dimensional ones in a mixed space-momentum representation. While the idea straightforwardly applies to any dimension d, here we focus on the case d = 2 and derive explicit expressions for two lattice models possessing a U(1) symmetry, i.e., free non-relativistic massless fermions and free complex (massive and massless) bosons. Although our focus is on symmetry resolved entropies, some results for the total entanglement are also new. Our derivation gives a transparent understanding of the well known different behaviours between massless bosons and fermions in d ⩾ 2: massless fermions presents logarithmic violation of the area which instead strictly hold for bosons, even massless. This is true both for the total and the symmetry resolved entropies. Interestingly, we find that the equipartition of entanglement into different symmetry sectors holds also in two dimensions at leading order in subsystem size; we identify for both systems the first term breaking it. All our findings are quantitatively tested against exact numerical calculations in lattice models for both bosons and fermions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.