Abstract

High-entropy alloy aerogels (HEAAs) have become promising electrochemical catalysts because of the advantageous combination of high-entropy alloys and aerogel structure. However, how to fabricate 3D porous high-entropy alloys accurately is still a great challenge due to their inherent thermodynamic instability and differences in reduction potentials of metal ions. Herein, PtBi1.5Ni0.2Co0.2Cu0.2 HEAAs have been synthesized by combining co-reduction method and freeze-drying technology. The resulting PtBi1.5Ni0.2Co0.2Cu0.2 HEAAs have the structural and morphological benefits of both high-entropy alloys and aerogels. Both XPS and DFT results confirm that the d-band center of PtBi1.5Ni0.2Co0.2Cu0.2 HEAAs shifts to lower binding energy compared to Pt/C, indicating the effective regulation of electronic structure on the surface of PtBi1.5Ni0.2Co0.2Cu0.2 HEAAs. As a demonstration in the methanol oxidation reaction (MOR), a mass activity of 4.19 A mgPt−1 and long-term stability (>0.33 A mgPt−1 after 10 cycles of 3600 s stability test) can be obtained on the PtBi1.5Ni0.2Co0.2Cu0.2 HEAAs, outperforming binary Pt-based alloys and commercial Pt/C. The CO adsorption strength of PtBi1.5Ni0.2Co0.2Cu0.2 HEAAs is more weaker than that of PtBi1.5 alloys and Pt/C, which proves the enhanced CO tolerance. The results pave the way for fabricating the hybrids of high-entropy alloys and aerogels with superior activity and stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.