Abstract

ABSTRACTIn VLSI technology, there is interest in monitoring the sequence of phase formation of TiSi2 (c-Ti ⇒ a-TiSi ⇒ C49 TiSi2 ⇒ C54 TiSi2), with the prospect of reducing the temperature of formation of the stable C54 TiSi2 phase. In this study, phase formation characteristics of TiSi2 during rapid thermal annealing(RTA) of Ti-Si bilayers are investigated by means of in situ four point probe resistance measurements. Ex situ X-ray diffraction(XRD) was used for phase identification and characterization. Results indicate that the same multi-step sequence of transformations precede the formation of the C54 TiSi2 phase for heating rates from 1°C/s to 100°C/s. Also, all intermediate and metastable phases which occur at l°C/s also occur at 100°C/s. Temperature dependence and kinetics of the C49 TiSi2 and the C54 TiSi2 phase formation were studied over a wide range of heating rates. Activation energies estimated for the two processes were ∼2eV and ∼5eV respectively. Finally, a new Electrical Thermal Annealing(ETA) technique for heating at rates up to 30000°C/s is introduced. Preliminary in situ resistivity measurement results of TiSi2 formation at these high heating rates are also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call