Abstract
The evolution of texture and microstructure during the equal channel angular rolling (ECAR) and subsequent annealing in aluminum alloy 3003 sheets was investigated. The tools of ECAR were designed to provide a constant shear deformation of the order of 0.5 per passage while preserving the original sheet shape. Samples of the aluminum alloy 3003 sheets were repeatedly deformed by ECAR up to twelve passages. Shear textures developed after the first passage of ECAR. However, the intensity of shear texture components decreased with increasing number of ECAR passages. After a large number of ECAR passages, a random texture developed at the expense of shear texture components. Observations by TEM and EBSD revealed that the degree of misorientations within the deformed grains increased with increasing number of ECAR passages. After recrystallization annealing, samples deformed by ECAR displayed pronounced {111}//ND fiber orientations. The annealed sheets comprising of ultra-fine grains were successfully produced in the samples deformed by a large number of ECAR passages.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have