Abstract
Equal channel angular rolling (ECAR) is a severe plastic deformation (SPD) technique which has been used to produce metal sheets with ultra-fine grain structure. In the present work, the relationships between the mechanical properties and microstructure of samples during the ECAR process have been investigated. The Rietveld method was applied to analyze the X-ray diffraction pattern and to determine the microstructural characteristics including the crystallite size, microstrain, and dislocation density. It was observed that the average crystallite size and dislocation density increased by increasing the strain during the ECAR process. The results showed that ECAR is a procedure intended to obtain meaningful structural refinement appearing in a crystallite. It can be justified by using Taylor equation that the mechanical properties are related to the dislocation density. The ECAR process strongly increases the yield strength and microhardness due to an increase in the dislocation density over a wide range of strain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.