Abstract

Abstract Multi-walled carbon nanotubes and one-dimensional wire-like nanostructures have been synthesized using acetylene as carbon sources with a metal-free mild chemical vapor deposition process. It shows that anisotropic carbon nanostructures can interact to form nanotubes by self-function. Furthermore, the detailed microscopic observation of the obtained nanostructures indicates that the development of fully hollow carbon nanotubes should undergo a quite complex physical and chemical transformation process, and their formation abides by the “particle–wire–tube” stepwise evolution mechanism. In this process, the one-dimensional wire-like nanostructures can be viewed as the intermediate stages of carbon nanotube formation, which record traces about nanotube evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.