Abstract

A type IIa natural diamond was irradiated with 300 kV electrons at 16 and 87 K. Transmission electron microscopy and electron energy-loss spectroscopy were employed to investigate the phase stability of diamond under electron irradiation. At both temperatures, the diamond structure was found to be stable, and the formation of defect clusters was observed. The present results in comparison to previous work on ion implantation indicate that displacement cascade damage is a prerequisite for irradiation-induced phase transformation from diamond to amorphous carbon or graphite. The temperature dependence of the cluster size suggests that interstitials are thermally mobile above 50 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.