Abstract

The formation of radiation-induced defect clusters in neutron-irradiated silicon have been studied by solving the semilinear parabolic reaction-diffusion coupled equations. It is found that most of primary displacement defects (interstitial and vacancy) would be annihilated by direct I–V recombination in an extremely short time, and a lot of divacancies would be formed meantime. In particular, the production of 4-vacancy defects is independent of the concentration of sinks and impurities in the sample, and of the energy of recoil particles. The threshold energy of vacancy cluster formation has also been investigated. The results are discussed and compared with experiment observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.