Abstract
Co-continuous structures can be regarded as the coexistence of at least two continuous structures within the same volume. Blends with co-continuous structures may combine the properties of both components in a favorable way, for example, mechanical moduli. This review article deals with the identification, characterization, and properties of co-continuous structures as well as with the development of co-continuous structures during the melt blending process. Co-continuous structures usually can be formed within a composition region about the phase inversion composition, which mainly depends on the viscosity ratio. On the other hand, co-continuous structures can be found independent of composition as intermediate stages during the initial state of morphology development and during phase inversion process in blends in which the component finally forming the dispersed phase forms the matrix in early mixing states. In addition, even at low volume fractions of one component, stable co-continuous morphologies can be created using suitable processing conditions, forming long elongated interconnected structures that do not break up because of the flow. The interfacial tension plays an important role for the stability; a lower interfacial tension leads to broader composition ranges of co-continuous structures. Another factor enhancing the formation and stability of co-continuous structure is melt yield stress of one or both components of blends. In addition, this article reviews the stability of co-continuous structures during further processing and the influence of compatibilization on the structure formation and stability. Subsequently, two models describing the co-continuous composition range are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have