Abstract
Abstract A method for calculating the dynamic mechanical properties of elastomer blends with co-continuous structures has been presented. The calculations are based on Kerner's packed-grain model for composite media. Comparisons of theoretical calculations with experimental data show that this model closely approximates the viscoelastic properties of blends with a co-continuous structure, at least in the glass-transition regions of the respective blend components. We have also shown that the storage modulus of co-continuous blends may be well-represented by a discrete-particle model. This result can be misleading, however, if the storage modulus alone is calculated and compared with experimental data. A comparison of viscoelastic data (log E′ and tan δ) with calculation clearly distinguishes the models and indicates that the packed-grain model is the correct representation of the structure of co-continuous blends. The agreement between theory and experiment reported above was principally found in the glass-transition regions of the respective components in the elastomer blend. We extended the comparison well into the rubbery region and found that the agreement between Kerner's mean-field theory and the experimental data was poor, particularly for the loss tangent. Different relaxation mechanisms (relaxations over greater periods of time) are available to the blend in the rubbery region of viscoelastic response, and these mechanisms are apparently not accounted for in the mean-field calculations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have