Abstract

ABSTRACTWe have synthesized single crystal Si1−xGex alloy layers in Si <100> crystals by high dose Ge ion implantation and solid phase epitaxy. The implantation was performed using the metal vapor vacuum arc (Mevva) ion source. Ge ions at mean energies of 70 and 100 keV and with doses ranging from 1×1016 to to 7×1016 ions/cm2 were implanted into Si <100> crystals at room temperature, resulting in the formation of Si1−xGex alloy layers with peak Ge concentrations of 4 to 13 atomic %. Epitaxial regrowth of the amorphous layers was initiated by thermal annealing at temperatures higher than 500°C. The solid phase epitaxy process, the crystal quality, microstructures, interface morphology and defect structures were characterized by ion channeling and transmission electron microscopy. Compositionally graded single crystal Si1−xGex layers with full width at half maximum ∼100nm were formed under a ∼30nm Si layer after annealing at 600°C for 15 min. A high density of defects was found in the layers as well as in the substrate Si just below the original amorphous/crystalline interface. The concentration of these defects was significantly reduced after annealing at 900°C. The kinetics of the regrowth process, the crystalline quality of the alloy layers, the annealing characteristics of the defects, and the strains due to the lattice mismatch between the alloy and the substrate are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call