Abstract

A novel refractory multi-principal element alloy with high strength and toughness matching characteristics was successfully prepared by mixing TA15 alloy with AlNbTiVZr high-entropy alloy. The effects of the composition ratio of the high-entropy alloy on the microstructure evolution and its influence on properties were investigated in this study. The tensile strength of the 70 wt % AlNbTiVZr HEA/Ti multi-principal element alloy is 1.18 times more than that of TA15 alloy, which has a value of 1068.0 ± 2.1 MPa. The increase in strength is mainly due to the production of equiaxed fine grains and the development of a robust and resilient body-centered cubic (BCC) phase in the alloy following the introduction of the high-entropy alloy. The attainment of the acceptable tensile strain is the result of the combined influence of the BCC matrix phase and the dispersed second-phase particles. The exceptional mechanical capabilities of the 70 wt % AlNbTiVZr/Ti multi-principal element alloy undeniably enhance its potential for use as a structural component in aerospace load-bearing constructions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.