Abstract

We study the growth and optical properties of Cr-doped CdTe/ZnTe nanostructures grown on ZnTe (001) substrates by molecular beam epitaxy. In-situ reflection high-energy electron diffraction is used to study the growth processes and strain relaxation behaviors of Cr-doped CdTe quantum dots (QDs). After 4.5�ML deposition, the surface lattice parameter begins to increase remarkably, which indicates that the two-dimensional growth mode is terminated and the CdTe layer grows in a three-dimensional mode. Low temperature photoluminescence spectra of Cr-doped CdTe QDs (Tcr = 900 °C) show a broad emision. With increasing the Cr cell temperature above 1000 °C, the luminescence from CdTe QDs disappears and the broad luminescence at around 1.6 eV becomes dominant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.