Abstract

With the demand of aggressive scaling in nanoelectronics, further progress can be realized by integration of high mobility semiconductors, such as III–V compound semiconductors, with complementary metal‐oxide‐semiconductor (CMOS) technology. In this study, the formation of shallow n–p and p–n junctions in GaAs utilizing ion implantation of S and Zn, respectively, followed by millisecond‐range flash lamp annealing (FLA) is presented. The distribution of implanted elements obtained by secondary ion mass spectrometry (SIMS) shows that the FLA process can effectively suppress the diffusion of dopants. Simultaneously, the ms‐range annealing is sufficient to recrystallize the implanted layer and to activate the dopants. Formation of p–n and n–p junctions is confirmed by current–voltage characteristics. The ratio of reverse to forward current can reach up to 1.7 × 107 in the n‐GaAs:Zn case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call